Circular Dichroism of Polypeptides in Helix-disrupting Media. The "218 nm Band"

By D. BALASUBRAMANIAN and R. S. ROCHE*

(Department of Chemistry, The University of Calgary, Calgary 44, Alberta, Canada)

Summary Data on several polypeptides, dissolved in a variety of helix-disrupting solvents, reveal the ubiquity of the peptide $n-\pi^*$ band in their c.d. spectra.

It has recently been claimed¹ that the two-band c.d. spectra [205 nm (-ve); 218 nm (+ve)] of charged polyelectrolytes such as poly-L-glutamic acid (PLGA) (pH 7–12)

and poly-L-lysine (PLL) (pH <7) are characteristic of an extended chain conformation with threefold left-handed helical sequences (EH) which are stabilised by electrostatic repulsion between adjacent charged side-chains; and that a truly unordered, random-coil, form (U), characterised by a single negative c.d. band near 205 nm (no 218 nm band), is achieved upon addition of 4M-Ca²⁺ or Li⁺ ions to the

solution. Our results reveal (Table) that the c.d. spectra of polypeptides with non-ionisable side-chains, dissolved in a variety of non-aqueous helix-disrupting media, are similar to the c.d. spectra of charged PLGA and PLL in salt-free aqueous media.

have a positive band near 218 nm and are qualitatively similar to the spectra of all the polypeptides examined in H_2SO_4 . The fluoro gem-diols are non-helicogenic solvents,² and being weak acids (p K_a ca. 6.5) would not be expected to protonate polypeptides.³[±]

Polypeptide	Solvent	Temp.	λ_{max} (nm)	$\Delta \epsilon$
(y-Methyl-L-glu),	H,SO,	25°	218	0.72
, , , , , , , , , , , , , , , , , , ,	HFPĎ	50°	216	0.76
"	5FKPD	50°	216	0.74
"	HFPD. 0.54H.O	25°	215	0.3
"	HFIP HFPD	25°	215	0.38
(L-Histidine)	H.SO.	"	217	0.9
(L-Leucine)	,, ,,	"	219	0.14
(L-Valine)	"	"	218	0.60
(v-Methvl-D-glu)	**	"	220	-0.57
(v-Ethvl-L-glu)	27		220	0.68c
, , , , , , , , , , , , , , , , , , ,	CH.SO.H		220	1.65°
(Cvclohexvl-L-ala)	CH.SO.H		220	0·44d
(L-Phe) n			221	2.7 d

Polypeptide c.d. data-the "218 nm band"a

^a In all these cases, the more intensive negative band appears below 205 nm.

^b 48:52 w/w. This composition is non-helicogenic.

^c J. Steigman, E. Peggion, and A. Cosani, J. Amer. Chem. Soc., 1969, 91, 1822.

^d E. Peggion, L. Strasorier, and A. Cosani, *ibid.*, 1970, 92, 381.

If the c.d. band near 218 nm can be used unambiguously as a criterion for the EH conformation then it would seem that coulombic repulsions between charged side-chains are not unique in generating such structures. It could be argued, however, that protonation of the polypeptide chain in H_2SO_4 and $CH_3SO_3H^{\dagger}$ could give the EH by repulsion between protonated sites along the chain.

Surprisingly, the c.d. spectra of $(\gamma-\text{methyl-L-glu})_n$ in hexafluoropropane-2,2-diol (HFPD); HFPD,0.54H,O; pentafluoromonochloropropane-2,2-diol (5FKPD) and in hexafluoroisopropyl alcohol (HFIP) containing HFPD all

If the EH conformation is assumed by $(\gamma$ -methyl-L $glu)_n$ in the fluoro-alcohols, it seems very unlikely that it is stabilised by electrostatic forces. Chain expansion could result from specific polymer-solvent interactions involving hydrogen-bond formation.

Alternatively, the 218 nm band may be common to both the U and EH conformation and its disappearance on addition of Ca2+ and Li+ ions to aqueous solutions of PLGA and PLL may be a result of specific ion-binding to the peptide chromophore.

(Received, May 11th, 1970; Com. 731.)

 \dagger It has been established that $H_{2}SO_{4}$ and $CH_{3}SO_{3}H$ do not cause appreciable covalent damage to poly- γ -ethyl-L-glutamate over several hours (J. Steigman, E. Peggion, and A. Cosani, J. Amer. Chem. Soc., 1969, 91, 1822. The results reported here are reliable from that point of view.

[‡] We have established that the fluoro-alcohols do not cleave side-chain ester bonds.

¹ M. Lois Tiffany and S. Krimm, *Biopolymers*, 1969, 8, 347 and earlier references cited therein.

² D. Balasubramanian and R. S. Roche, Polymer Preprints, 1970, 11, 127, 132. ³ J. Steigman, A. S. Verdini, C. Montagner, and L. Strasorier, J. Amer. Chem. Soc., 1969, 91, 1829; F. A. Bovey, Pure and Appl. Chem., 1968, 16, 417; D. Balasubramanian, Biochem. Biophys. Res. Comm., 1967, 29, 538.